倾角位移
用途安全监测
是否定制可定制
生产周期5-7天
可售地全国
上海钧测检测技术服务有限公司授权上海钧测检测技术服务有限公司宜昌分公司使用其检验检测机构资质认定证书,负责公司系列产品在网络平台上发布信息。上海钧测检测技术服务有限公司宜昌分公司所发信息中的检测、鉴定由上海钧测检测技术服务有限公司检测与鉴定,报告由上海钧测检测技术服务有限公司出具。
房屋沉降监测受影响的因素:
仪器下沉是指由于测站处的土质松软使仪器发生下沉,视线降低,从而使得前视读数减小,算得的高差,引起高差误差。
古墓沉降监测的内容
1. 监测点的布设
监测点的布设是古墓沉降监测的要任务。在布设监测点时,需要考虑以下几点:先,监测点应尽可能选择在能够反映古墓葬沉降特征的关键部位;其次,监测点应具有代表性和可比性;后,监测点的数量和分布应根据古墓葬的规模和特点来确定。
2. 监测方法的选取
古墓沉降监测的方法有很多种,包括水准测量、GPS测量、三维激光扫描等。根据实际情况,需要选择合适的监测方法。例如,水准测量是一种传统的测量方法,适用于精度要求较高的监测项目;GPS测量则具有高精度、率、自动化等优点,适用于大范围监测项目;三维激光扫描则具有高精度、高分辨率、快速扫描等优点,适用于复杂形状的文物古迹监测。
3. 监测数据的处理和分析
监测数据的处理和分析是古墓沉降监测的核心环节。数据处理主要包括数据筛选、数据整理、数据计算等环节;数据分析则需要对处理后的数据进行统计、分析和解释,以了解地表沉降对古墓葬的影响。
4. 预测和评估
基于监测数据和分析结果,需要对古墓葬的沉降趋势进行预测和评估。预测和评估的目的是为了及时发现和解决文物的潜在危险,为文物保护提供科学依据。预测和评估的内容包括:预测未来沉降量、评估沉降对文物的影响程度、评估文物保护措施的有效性等。

水平位移监测:
测定特定方向上的水平位移时可采用视准线法、小角度法、投点法等;测定监测点方向的水平位移时可视监测点的分布情况,采用前方交会法、自由设站法、坐标法等;当基准点距基坑较远时,可采用GPS测量法或三角、三边、边角测量与基准线法相结合的综合测量方法。当监测精度要求比较高时,可采用微变形测量进行自动化全天候实时监测。
水平位移监测基准点应埋设在基坑开挖深度范围以外不受施工影响的稳定区域,或利用已有稳定的施工控制点,不应埋设在低洼积水、湿陷、冻胀、胀缩等影响范围内;基准点的埋设应按有关测量规范、规程执行。宜设置有强制对中的观测墩;采用精密的光学对中装置,对中误差不宜大于0.5。

房屋沉降鉴定是指对房屋在长期使用过程中,由于地基土质变化、上部荷载增加或
结构本身固有的变形所引起的房屋倾斜或不均匀沉降进行检测和鉴定的活动。
房屋沉降的原因:
1、基础不均匀下沉:
基础不均衡下沉是导致建筑物发生倾斜的重要原因,一般表现为建筑物的偏心受压。
造成这种结果的主要原因在于基础的埋置较浅或软弱,使基础产生不均匀压缩性变
形;或者因施工质量差而使基础产生不均匀下沉等。
2、上部结构的不均衡受力:
上部结构(包括楼板、梁等)在长期的使用中会产生较大的变形量,当其变形**过一定的允许范围时即会造成建筑物的倾斜甚至倒塌;另外由于地震等原因也会引起建筑物的不均衡受力和倾斜。
3、使用不当:
如**负荷运转、堆放杂物等会使房屋的承重力降低而出现裂缝和损坏等现象;还有的
房屋在使用过程中受到过大的震动也会引起房屋的破坏而造成倾斜和不均匀下沉的现
象。此外如果房屋周围有地下管线经过也可能影响建筑的正常使用而引起建筑物的倾
倒或歪斜现象的发生。
为了确保建筑物(结构)的正常使用寿命和建筑物(结构)的安全,并为将来的勘测,
设计和施工提供可靠的数据和相应的沉降参数,有必要观察建筑物的沉降。建筑物
(结构)性别和重要性越来越明显。
当前的法规还规定,必须遵守高层建筑,高耸结构,重要的古建筑和连续生产设施基
础,电力设备基础,滑坡检测等措施。特别是在高层建筑的建造中,地基沉降检测用
于加强过程监控。
指导合理的施工程序,防止在施工过程中出现不均匀沉降,提供及时的反馈信息,为
勘测,设计和施工部门提供详细的信息,并避免损坏建筑物的主要结构或影响使用的
裂缝由于沉降的结构不同,造成巨大的经济损失。
房屋沉降检测应通过设置基准点或在房屋上设置检测点对房屋的沉降进行定期检测。
对同一批检测对象,应在两个或两个以上不同位置设置基准点,基准点应设置在房屋
沉降变形影响范围以外。
沉降检测频率可每三个月一次,以后每半年一次。受相邻工程施工影响,尚应进行沉
降检测。一般年每月一次,往后每半年一次,直至沉降稳定。在检测过程中如出现
房屋荷载突然增加、四周积水、长期降雨时,应增加测量次数。房屋突然出现大量沉
降、不均匀沉降或严重开裂时,应逐日或三天一次连续检测。

竖向位移监测:
竖向位移监测可采用几何水准或液体静力水准等方法。
坑底隆起(回弹)宜通过设置回弹监测标,采用几何水准并配合传递高程的设备进行监测,传递高程的金属杆或钢尺等应进行温度、尺长和拉力改正等
基坑围护墙(坡)**、墙后地表与立柱的竖向位移监测精度应根据竖向位移报警值确定。
深基坑监测是基坑工程施工中的一个重要环节,是指在基坑开挖及地下工程施工过程中,对基坑岩土性状、支护结构变位和周围环境条件的变化,进行观察及分析工作。通过土压力盒 、锚杆应力计 、孔隙水压计等智能传感设备 ,实时监测在基坑开挖阶段 、支护施工阶段 、地下阶段及搂工后周边相邻建筑物 、附属设施的稳定情况 ,对现场监测数据采集 、复核 、汇总 、整理 、分析同时相关监测数据数据传送到数字化云平台,并对**警戒数据进行报警并将监测结果及时反馈,预测进一步施工后将导致的变形及稳定状态的发展,根据预测判定施工对周围环境造成影响的程度,来设计与施工决策。
产品功能及特点:
1、监测数据自动采集、无线传输:通过深基坑支护结构及周边环境监测,实现监测过程中的数据自动采集,充分利用无线传输技术,实现不同精密传感器监测数据实时上传数字云平台,提高监测与效率,减少人为因素对监测数据的干扰,确保数据真实可靠;
2、原始数据实时处理:实时监测数据上传至云平台后,对水平位移、竖向位移、水位、应力、沉降等潜在安全隐患进行实时计算和分析处理,动态形成各类数据BI分析模型、使监测数据一目了然,为管理决策提供依据;
3、多样式预警、报警功能:深基坑监测系统对**出警界阀值的数据进行现场预警、报警,达到报警状态时系统通过现场声光报警器警示现场施工人员撤离危险区域,并以短信形式将预警、报警数据发送到各责任主体单位、安全监督机构负责人的手机上;
4、事前预防、主动、提升效率:监测单位、行政主管部门在对深基坑工程监测和巡检的同时,可以对自然条件、支护结构、施工工况、周边环境及监测设施的巡视结果进行拍摄上传、并对监测数据进行基坑变形的影响分析 ,及时采取措施,实现了被动监测转为主动,事后处理转为事前预防;
深基坑监测是基坑工程施工中的一个重要环节,是指在基坑开挖及地下工程施工过程中,对基坑岩土性状、支护结构变位和周围环境条件的变化,进行观察及分析工作,并将监测结果及时反馈,预测进一步施工后将导致的变形及稳定状态的发展,根据预测判定施工对周围环境造成影响的程度,来设计与施工,实现所谓信息化施工。
http://junce88.b2b168.com